Problem Set III: Due February 28, 2013
1.) Use the product of the exterior product (wedge product) to prove total phase volume $d \mathrm{~V}=d \underline{p}_{1} d \underline{q}_{1} d \underline{p}_{2} d \underline{q}_{2} \ldots d \underline{p}_{n} d \underline{q}_{n}$ is conserved for a Hamiltonian system. Note: Start your solution by giving a more precise definition of $d \mathrm{~V}$.
2.) Determine the stable equilibrium positions for a simple pendulum which oscillates:
a.) horizontally, with $x=x_{0} \cos \omega t$
b.) in a circle, with $x=r_{0} \cos \omega t, y=r_{0} \sin \omega t$.

Take $\omega \gg \sqrt{g / \ell}$ and consider the full range of parameters.
3.) Now again consider a simple pendulum with support oscillating at $y=y_{0} \cos \omega t$. If the pendulum has length ℓ (so $\omega_{0}=\sqrt{g / \ell}$) and $\omega=2 \omega_{0}+\epsilon$, determine the conditions for, and growth rate of, parametric instability.
4.) Consider a uniform magnetic field $B(t) \hat{z}$ whose strength is time dependent. Show that Faraday's law $\partial \underline{\mathrm{B}} / \partial t=-c \nabla \times \underline{\mathrm{E}}$, can be satisfied by an associated electric field

$$
\underline{\mathrm{E}}=-\frac{\dot{B}}{2 c}(x \hat{y}-y \hat{x})
$$

where the dot indicates a time derivative. Let any additional electrostatic field be zero.

Show that the equation of motion of an ion can be written in the form

$$
\ddot{z}=-i \Omega \dot{z}-i \frac{\dot{\Omega}}{2} z
$$

where $\Omega(t)=e B(t) / M c$ and $z=x+i y$. Set

$$
z(t)=w(t) \exp -i \int[\Omega(t) / 2] d t
$$

and show that w satisfies the harmonic oscillator equation

$$
\ddot{w}+\frac{\Omega^{2}(t)}{4} w=0 .
$$

Let B be linear in time and show that one solution of this equation can be expressed in terms of ordinary Bessel function J. Take the limits $t \rightarrow \pm \infty$ and show that the magnetic moment of the ion is asymptoticly constant and the same in both limits, even though B has passed through zero and violated the usual condition for the conservation of the magnetic moment. If B is a constant, show that the motion is a circle in the $x-y$ plane.
5.) Compute the threshold for parametric instability in the presence of linear frictional damping, as well as mismatch. For what range of mismatch \in will instability occur?
6.) Let $(q, p, t)=H_{0}(q, p)+V(q) d^{2} A / d t^{2}$ where $A(t)$ is periodic, with period $\tau \ll T$. Here T is the period of the motion governed by H_{0}.
a.) Derive the mean field (i.e. short time averaged) equations for this system.
b.) Show that these mean field equations may be obtained from the effective Hamiltonian

$$
K(p, q)=H_{0}(p, q)+\frac{1}{4 m}\left\langle\left(\frac{d A}{d t}\right)^{2}\right\rangle\left(\frac{\partial V(q)}{\partial q}\right)^{2} .
$$

Here $<>$ means a short time average. You may assume $H_{0}=p^{2} / 2 m+V_{0}(q)$.
7.) What is the relation between the volume and pressure of a gas of point particles moving within a cubic box of side L ? Assume the walls are hard, so particles reflect elastically, and that two opposite sides move together or apart slowly. Comment on the relation between your result and those of thermodynamics.
8.) Consider the asymmetric top, with moments of inertia $I_{1}<I_{2}<I_{3}$. Here $1,2,3$ refer to the principal axes in a frame for which the inertia tensor is diagonal. Using the Euler equations:
a.) Derive the equations of motion for $\Omega_{1}(t), \Omega_{2}(t), \Omega_{3}(t)$, the angular frequencies associated with axes $1,2,3$.
b.) Show that if $\Omega_{2} \cong \Omega_{0}$ while Ω_{1}, Ω_{2} start from an infinitesimal perturbation, instability results. Show that $\Omega_{1} \cong \Omega_{0}$ or $\Omega_{3} \cong \Omega_{0}$ is stable.
c.) What are the two conserved quantities which constrain the evolution in b.)?

